欧式GRC构件的养护主要还是要根据它的物理性能,物理性能主要包括抗压强度、抗弯极限强度、抗拉极限强度和抗冲击强度。对于抗压强度,国际GRC学术界把垂直于纤维分布面时的受压状态称为面外受压,平行于纤维分布面时的受压状态称为面内受压。
欧式GRC构件的养护主要还是要根据它的物理性能,物理性能主要包括抗压强度、抗弯极限强度、抗拉极限强度和抗冲击强度。对于抗压强度,国际GRC学术界把垂直于纤维分布面时的受压状态称为面外受压,平行于纤维分布面时的受压状态称为面内受压。一般情况下,面外抗压强度大于面内抗压强度。
与未加纤维的水泥砂浆相比,GRC的面外抗压强度可提高10%~15%,而面内抗压强度由于纤维的层间分离作用有不同程度的降低。抗弯极限强度是指由于玻璃纤维的增强增韧作用,GRC材料的抗弯荷载达到最大值后仍然能够承受部分外力,试件仍然可保持完整性。
在双点加载的抗弯曲试验中,荷载值随加载时间在初始阶段呈线性提高,达到比例极限后,荷载值与加载时间变成非线性关系,此时荷载值随时间延续仍然不断提高直到达到最大值,此后荷载值随时间的延续呈非线性下降,检验中以将弯曲试验过程中出现的最大荷载值(极限荷载)作为抗弯性能检验结果,从中计算出抗弯极限强度。
当在泡水的GRC构件样品上另外施加荷载时,发现在对样品进行加载的前几个小时,观察到较大的渐变变形,类似于在其它环境下材料的一种渐变,饱水样品在低于弯曲屈服(工作应力范围)应力条件下典型的徐变曲线。